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INTRODUCTION

Duplex stainless steels are a type of stainless 
steel which are planned to supply better quality 
and corrosion resistance than standard austenitic 
stainless steel. So they are utilized broadly in the 
risers, manifolds, petrochemical industry in the 
form of pressure vessels and pipelines, and off -
shore gas and oil industry for systems of pipe-
work [1].

The problems such as poor surface hardness 
are familiar whereas machining duplex stainless 
steel. Hence, eff orts have been made to increase 
the machinability of these materials by selecting 
proper machining variables to get the optimum 
surface hardness [2].

The idea of Taguchi variable design which is 
utilized in off -line quality control procedures was 
fi rst developed in the early 1950s by Dr. Genichi 

Taguchi [3]. Off -line techniques for quality con-
trol are carried out throughout the process (or 
product) design and improvement. The idea of 
fractional factorial design serves as the concept 
of the Taguchi method which is an active tech-
nique for fi nding the best values of the cutting 
variables to produce a process or a product re-
sistant to noise sources [4, 5, 6]. The Taguchi 
method is dependent on experimental matrices 
which are unique orthogonal arrays (OA’s), al-
lowing evaluation of the concurrent impacts of 
many process variables [5, 6]. The goal of the de-
sign of the experiment is to identify the best stage 
for each cutting variable as well as the compara-
tive importance of each variable on the charac-
teristic of performance [5, 6]. The traditional de-
sign of experiment techniques is overly complex, 
consuming time, and diffi  cult to apply. Several 
tests must be carried out when more variables 
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are involved. The Taguchi approach uses an or-
thogonal array (OA) special purpose design to 
explore the entire variable with a smaller number 
of experiments to tackle this issue. According to 
Taguchi, the primary goal function for the trails 
related to orthogonal matrix is the signal versus 
noise (S/N) ratio [5, 6]. The signal-to-noise ratio 
is a metric for measuring the characteristics of 
performance and illustrates the stage that may be 
anticipated in the presence of noise elements. De-
pending on the type of goal function, Taguchi di-
vides the S/N ratio into three categories: “smaller 
the better,” “larger the better,” and “nominal the 
best”. The optimal stages of the cutting variables 
in Taguchi’s design of experiment are chosen uti-
lizing the “Analysis of Means” (ANOM) based 
on the S/N ratio. The stage of results at which 
the highest signal versus noise ratio is present 
within experimental category is the ideal stage 
for a cutting variable. To determine the compara-
tive importance of the cutting variables and their 
contributions to the S/N ratio, the “Analysis of 
Variance” (ANOVA) in the design nominated as 
Taguchi was employed [5, 6].

There are considerable numbers of studies 
in the existing literature regarding the prediction 
model for determining the surface hardness of 
turned materials. Omar José et al. [7] investigated 
the impacts of different turning cutting variables 
on the surface hardness of annealed AISI 1020 
steel utilizing carbide insert tools. The measured 
results demonstrated that as all the investigated 
variables increase, hardness also rises. To inves-
tigate how each variable affected the response 
variable, an “analysis of variance (ANOVA)” 
was utilized. The results show that cutting speed 
(69.2%) has the greatest influence on surface 
hardness, followed by feed rate (24.4%), and 
depth of cut (6.4%). Komson et al. [8] studied 
the cutting variables, which were influencing the 
hardness of turning stainless steel. The design of 
the experiment was carried out as two variables 
(feed rate and cutting speed) and three stages. Ad-
ditionally, the experiment involved both turning 
with cooling and non-cooling. They concluded 
that these variables were not significant impact on 
hardness. Grzegorz et al. [9] determined the hard-
ness of the turned surface of duplex stainless steel 
under various cutting variables. Different cutting 
speeds and both cooling and non-cooling cutting 
variables were utilized to test the hardness of ma-
terials. Arumugam et al. [10] analyzed the differ-
ence in the hardness of the machined surface as 

a result of turning, taking into account the feed 
rate, cutting speed, and depth of cut. The hard-
ness of EN353 forged steel was calculated utiliz-
ing a Rockwell hardness tester by adjusting these 
cutting variables according to Taguchi’s design of 
the experiment.

Wojtowicz et al. [11] investigated the im-
pacts of turning cutting variables on the integrity 
of a wrought Mg-Zn-Zr-RE alloy surface. First, 
rate of feed, speed of cutting, nose radius, and 
the depth of affected cut were utilized as input 
variables in a design of experiments to produce 
turned surfaces. Second, correlations between 
cutting variables and changes in surface integ-
rity, like microhardness, roughness and residual 
stress were found. This study recommended the 
best cutting variables for specific surface integ-
rity and fatigue life. Krolczyk et al. [12] evalu-
ated the microhardness of surface integrity after 
cooling and non-cooling turning of duplex stain-
less steel by coated sintered carbide wedges. The 
study examined the microhardness related the 
integrity of tested surafce for different speeds of 
cutting. The results demonstrated the increase of 
microhardness and the depth of hardening ver-
sus rounded radius of the wedge cutting edge in-
creases, whilst cooling cutting causes to reduce 
surface integrity hardening depth. Bombale et al. 
[13] investigated the impact of the conditions ac-
companied cut process on the resultant hardness 
of mild steel surface. The tested steel was of rank 
A. The cutting process accomplished by CNC 
turning machine under traditional cooling condi-
tions. The Taguchi method has been utilized to 
optimize cutting conditions like the speed of cut 
process, the rate of feed, and the depth of cut. 
The experiments covered by turning with famil-
iar cooling were organized utilizing Taguchi’s L9 
orthogonal array, that contains three layers of cut-
ting variables using turning, and the best cutting 
variable values were found. To show the success 
of Taguchi optimization, effectiveness tests were 
carried out with ideal variable settings. The re-
sults of the optimization showed that the depth of 
cut is crucial for maximizing hardness. Sada [14] 
studied the use of an artificial neural network to 
simulate the surface integrity of mild steel after 
turning. He utilized the cutting conditions (feed 
rate, cutting speed, and depth of cut) to predict 
the surface integrity in his model. He employed 
the Levenberg-Marquart and Scaled Conjugate 
Gradient methods along with a 40 observations 
training dataset to construct the neural network. 
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It was discovered that the Levenberg-Marquardt 
method produced a precise and successful esti-
mation of the experimentally gathered data with 
an optimal number of 10 hidden neurons. Bene-
dict et al. [15] examined the surface integrity of 
turned AISI 4140 QT utilizing surface micro-
hardness and roughness measurements. Different 
cutting variables are considered, namely cutting 
speed, tool corner radius, tool wear, and feed 
rate. The resultant data is examined by several 
algorithms, to develop real-time process con-
trol, and analytical models. The models are rated 
based on their stage of complexity, quality, and 
physical plausibility. 

It is clear from the previous research that al-
though researchers have attempted to investigate 
the relationship between surface hardness and 
various cutting variables of turning machining 
operation, there is still a gap in understanding the 
precise impact of these cutting variables on work 
piece surface hardness after turning operation, so 
that we choose this aspect for this study work. 
Our major objective is to investigate the impacts 
of cutting variables on turned Duplex Stainless 
Steel workpiece surface hardness by employing 
an uncoated carbide inserts tool on a medium 
CNC turning machine under conventional cool-
ing conditions, by utilizing “Analysis of Vari-
ance (ANOVA)” and design of experiments via 
Taguchi method.

METHODOLOGY

Experimental procedure

Turning is a common cutting process where 
a cutting tool gets outs the undesirable material 
from the outer layer of the spinning cylindrical 
workpiece. The modern machining industry’s ef-
forts to increase product quality and profitability 
by utilizing “Computer Numerical Controlled 
(CNC) machines” [16].

A duplex stainless steel rod was utilized as 
the investigation’s workpiece material. A circular 
workpiece with dimensions of 300 mm in length 
and 50 mm in diameter was employed in the 

current work. Table 1 displays the stated chemical 
compositions from the manufacturers determined 
by the PMI-master pro, while Table 2 displays 
the mechanical and physical properties of duplex 
stainless steel. Turning experiments were con-
ducted utilizing a medium CNC turning machine 
under a conventional cooling condition with an 
uncoated carbide insert. 

Three stage controllable variables and one 
response variable are utilized in the experiments. 
Table 3 lists three stages of these variables: the 
cutting speed (vc (m/min)), the feed (f (mm/rev)), 
and the depth of cut (ap (mm)) [17]. According 
to full factorial designs, 33 designs require a to-
tal of 27 runs. Turning operations are done for 27 
sets of cutting variables that are listed utilizing 
the L27 orthogonal array. After turning, Vickers 
microhardness (HV) is selected as a quality ob-
jective of the workpieces.

Larger microhardness values are typically pre-
ferred for surface integrity in turning operations. 
Nine trial runs according to the orthogonal array 
L9 are required to test the surface hardness of 27 
turned components. The L9 O.A. (orthogonal ar-
ray) table is utilized to determine the selection of 
the nine cutting trial runs. Wire cutting was done 
for only 9 turned portions amongst 27 referring to 
L9 O.A. This was achieved to cut down the time 
and expense of experimentation.

Table 1. Duplex stainless steel’s chemical composition [1] 
Elements C Mn Si P S Cr Mo Ni N

Wt. (%) 0.03
max

1.9
max

0.9
max

0.03
max

0.03
max

min: 20.0
max: 24.0

min: 2.6
max: 3.4

min: 4.4
max: 6.6

min: 0.07
max: 0.19

Table 2. Duplex stainless steel’s mechanical and phys-
ical properties [1]

Property Value

Yield strength (MPa) 448

Tensile strength (MPa) 621

Density(Kg/m³) 782

Poisson’s ratio 0.3

Fracture strain 25%

Elastic modulus (GPa) 190

Table 3. Control variables and stages [17]

Control  
Variables Unit

Stages

Stage 1 Stage 2 Stage 3

Cutting speed, vc m/min 56 36 24

Feed, f mm/rev 0.3 0.13 0.07

Depth of cut, ap mm 0.6 0.4 0.2
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Measuring device

In order to measure the surface hardness 
along the length and around the perimeter of the 
round bar, its nine-turned surface was cut using 
wire cut technology. Next, utilizing the hardness 
tester shown in Figure 1, apply a 300 g load from 
the specimen’s surface to its depth. For each spec-
imen, six measurements values were averaged. 
The hardness property was utilized to describe 
turning variables impact on surface modification. 

Signal to noise ratio 

The Taguchi robust design approach is an 
effective methods for creating systems with 

high-quality. He considered the system, variable, 
and tolerance design steps of the process and 
product development. In system design, the en-
gineer chooses the basic configuration based on 
technical and scientific concepts. In the variable 
design process, the precise system variable values 
are chosen. The best tolerances for the variables 
are chosen via tolerance design. [18]

These differences in an index named “signal-
to-noise ratio (S/N)” are utilized for optimization. 
It is mainly of three categories: “Nominal-is-the-
best (S/NT)”, “Larger-is-the-better (maximize) 
(S/NL)”, and “Smaller-is-the-better (minimize) 
(S/NS)”. S/NL is utilized when the response is 
large enough to ensure optimized system, S/NT is 
utilized when the target is to ensure reduction in 
the variability around a particular target, and S/
NS is utilized when the response is enough small 
to ensure optimized system. Since the goal of 
this work was to create maximum hardness dur-
ing a turning process, a larger value refers better 
hardness. Therefore, as refered in equation 1, en-
hanced quality behavior was adopted and utilized 
in this research. 

𝑆𝑆𝑆𝑆
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(1)

where: y – the observed data and n is the number 
of observations. Notice that this S/N ratio 
is given in decibels. [19] 

RESULTS AND DISCUSSION

Analysis of means and analysis of variance

The goal of the present research is to increase 
the hardness after turning Duplex stainless steel. 
Hence, a larger-the-better quality characteristic Figure 1. Vickers hardness tester

Table 4. Orthogonal array L9 of the experimental runs with measured responses and corresponding S/N ratios

No. Cutting Speed (vc)
m/min

Feed (f)
mm/rev

Depth of Cut (ap)
mm

Hardness
HV

S/N ratio
dB

1 56 0.3 0.6 210 46.444

2 56 0.13 0.4 256.7 48.188

3 56 0.07 0.2 270 48.627

4 36 0.3 0.4 252.8 48.055

5 36 0.13 0.2 246.4 47.832

6 36 0.07 0.6 288 49.187

7 24 0.3 0.2 228 47.158

8 24 0.13 0.6 229 47.196

9 24 0.07 0.4 277 48.849
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for hardness has been chosen. Equation 1 was uti-
lized to calculate the S/N ratios for each orthogo-
nal array trial, and the results are shown in Table 4.

The “Analysis of Means (ANOM)” depend-
ing on the “S/N ratio” was utilized to establish the 
best cutting variables stages [5]; Table 5 shows the 
ANOM results for surface hardness (HV). The best 
combination stage variable is that stage which has 
the highest value of “S/N ratio”. For maximum 
hardness, it has been discovered that cutting speed 
of 36 m/min, feed of 0.3 mm/rev, and depth of cut 
of 0.4 mm are the optimum variable settings.

The “Analysis of Variance” (ANOVA) de-
pending on the S/N ratio has been utilized to inves-
tigate the impacts of variables in turning process 

considerably [5, 6], Table 6 summarizes the results 
of ANOVA for surface hardness. The ANOVA table 
reveals that the feed (71.29%) plays a significant 
impact in maximizing the hardness while the cut-
ting speed (11.61%) and the depth of cut (12.1%) 
have no discernible influence on hardness control.

Analysis of main impact plots

The analysis is carried out utilizing the soft-
ware program MINITAB-16 [19]. Figure 2 shows 
the major impact of the plot. It clearly illustrates 
how hardness varies depending on three variables: 
speed of cut process, feed, and the depth of cut. 
The x-axis of the plot represents of each cutting 
variable value, while the y-axis represents the 
value of hardness. A horizontal line refers the re-
sponse’s mean. The major impact plots are utilized 
to obtain the best conditions in the design to find 
the ideal hardness. Main impact plots show that 
cutting speed at stage 2 (36 m/min), feed at stage 1 
(0.3 mm/min), and depth of cut at stage 2 (0.4 mm) 
are the best stages for the most extreme hardness.

Tests implemented to verify 
results optimization

After choosing the best stage of cutting vari-
ables, the final stage is to estimate and validate the 
behavior of such performance. The expected best 
S/N ratio value (ηopt) is shown in equation 2 [4]:
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(2)

where: p is the number of variables that have an 
impact on the characteristics of machin-
ability;        

Table 5. ANOM for microhardness depended on 
S/N ratio

Control  
Variables

Stages Optimum 
Stage1 2 3

Cutting speed, vc 47.74 48.36 47.75 2

Feed, f 48.98 47.74 47.22 1

Depth of cut, ap 47.87 48.36 47.61 2

Table 6. ANOVA for microhardness depended on 
S/N ratio

Control 
variables DF Adj SS Adj MS %

Contribution

Cutting 
speed, vc

2 598.6 299.3 11.61

Feed, f 2 3676.4 1838.2 71.29

Depth of 
cut, ap

2 623.9 312.0 12.10

Error 2 257.8 128.9 5.00

Total 8 100.00

Figure 2. Impact of cutting variables on hardness
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m is the average of the S/N ratio;  
(mi,j)max is the S/N ratio of best stage i of 
variable j. 

The confidence interval (CI) of (ηopt) for the 
best cutting variable stage combination at the 95% 
stage is calculated to assess how closely the exper-
imental value of the S/N ratio (ηexpt) corresponds 
to that of the expected value (ηopt). The interval 
of such confidence is shown in equation 3 [4, 5]:
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(3)

where: F(1,ve) – the value related to F to en-
sure 95% confidence;     
νe – the error freedom degrees;    
Ve – error mean square;   
ηeff = N/1 + ν, N = total number of trails 
in the orthogonal array, and υ = freedom 
degrees of p variables; ηver is the confir-
matory test trial number.

The workpieces from identical lots were turned 
after the optimum possible combination values for 
the cutting variables were determined utilizing Ta-
guchi optimization. The expected S/N ratio value 
(ηopt) and experimental S/N ratio value (ηexpt) 
were analyzed. The results of the corroboratory 
tests are shown in Table 7, and it is clear from this 
table that the expected error, i.e., (ηopt − ηexpt ) 
encloses the confidence interval, demonstrating 
the sufficiency of the surface hardness preserva-
tive models. The optimal combinations of cutting 
variable for maximizing surface hardness with the 
accompanying ideal values are shown in Table 8. 
We would like to point out here that the obtained 

results are consistent with what was stated in the 
literatures about the effect of cutting variables on 
the hardness of steel alloys [7, 9, 13].

CONCLUSIONS

The following conclusions were reached after 
conducting an experimental examination on du-
plex stainless steel utilizing an uncoated carbide 
insert tool under traditional cooling circumstances 
at three stages to identify the ideal stage of cutting 
variables. The feed has the largest impact on hard-
ness with a percentage of 71.29% while speed of 
cut and depth of cut have negligible impact on the 
hardness. Maximum hardness is achieved at 36 m/
min cutting speed, 0.3 mm/min feed, and 0.4 mm 
depth of cut, which is the optimum cutting variable 
combination. According to the verification tests, the 
obtained results are precise up to a 95% confidence 
stage. The Taguchi method is expected to be the op-
timum way of optimizing different cutting variables 
since it minimizes the number of experiments.
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